Support vector machines for seizure detection in an animal model of chronic epilepsy.
نویسندگان
چکیده
We compare the performance of three support vector machine (SVM) types: weighted SVM, one-class SVM and support vector data description (SVDD) for the application of seizure detection in an animal model of chronic epilepsy. Large EEG datasets (273 h and 91 h respectively, with a sampling rate of 1 kHz) from two groups of rats with chronic epilepsy were used in this study. For each of these EEG datasets, we extracted three energy-based seizure detection features: mean energy, mean curve length and wavelet energy. Using these features we performed twofold cross-validation to obtain the performance statistics: sensitivity (S), specificity (K) and detection latency (tau) as a function of control parameters for the given SVM. Optimal control parameters for each SVM type that produced the best seizure detection statistics were then identified using two independent strategies. Performance of each SVM type is ranked based on the overall seizure detection performance through an optimality index metric (O). We found that SVDD not only performed better than the other SVM types in terms of highest value of the mean optimality index metric (O⁻) but also gave a more reliable performance across the two EEG datasets.
منابع مشابه
مروری بر انواع مدلهای حیوانی تشنج: مقاله مروری
Nowadays, there are various animal models of acute and chronic seizures. Some chemical and electrical models such as seizure induced by pentylenetetrazol injection and maximum electric shock has been developed over of six decades and different kinds of chemical, electrical and genetic models have been admitted up to now. Among chemical models of seizure induction penicillin, bicuculline, tetanu...
متن کاملDesigning Patient-Specific Seizure Detectors From Multiple Frequency Bands of Intra-cranial EEG Using Support Vector Machines
Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a den...
متن کاملAutomatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis
Epilepsy is a very common neurological disorder. Electroencephalogram (EEG) is the major diagnostic tool used for analyzing the human epileptic seizure activity and there is a strong need of an efficient automatic seizure detection using it to ease the diagnosis. This work aims at an automatic system for diagnosis of epilepsy. Here we extract some features like fractal dimensions, sample entrop...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2010